

The Unmanned Systems Group

www.unmanned.vt.edu

Promoting Unmanned Systems Research and Collaboration at Virginia Tech

Virginia Tech

The University

- Virginia's public land-grant university
- 110 Master's and Doctoral Programs
- 28,000 students (26,000 in Blacksburg)
- 6,500 graduate students (30% doctoral students)

The College of Engineering

- Undergraduate:
 - 15th among accredited engineering schools
 - 10th among public schools
- Graduate: 8 departments ranked in Top 20

Unmanned Systems Capabilities

Virginia Tech's Unmanned Systems programs are unique

- Broad expertise
- Internationally recognized programs in specific disciplines

Capabilities in all domains

- Ground vehicles
- Underwater vehicles
- Air vehicles
- Space vehicles

Unmanned Underwater Vehicles

Platoons of Cooperating AUVs

The Virginia Tech miniature AUV

Principal Investigator:

Daniel J. Stilwell **Electrical and Computer Engineering**

Sponsors:

NSF (CAREER) ONR (Young Investigator Program) DARPA

Applications:

- Rapid, wide-area search and survey
- Harbor reconnaissance
- Sensor networks
- Environmental assessment

Approach:

- Multi-vehicle control and estimation
- Rigorous field trials (Virginia coast and Chesapeake Bay)

An simulated AUV follows a salinity contour

Nonlinear Control of Autonomous Underwater Vehicles (AUV's)

Global attitude control

Principal Investigator:

Craig Woolsey
Aerospace & Ocean Engineering

Sponsors:

NSF (Career Award; Collaborative Ocean Technology Development Grant) ONR (Young Investigator Program)

- Develop novel actuators and provably effective nonlinear control strategies for AUV's moving at very low speeds.
 - Increase performance envelope
 - Improve robustness and reliability
- Develop and field practical control technology for ocean scientists.

Global path following

Unmanned Aerial Vehicles

Adaptive Output Feedback Control for Autonomous Vehicles

Failure of one control surface can cause saturation of others during control reconfiguration.

Principal Investigator:

Naira Hovakimyan
Aerospace & Ocean Engineering
(Collaboration with E. Lavretsky, Boeing)

Sponsors:

AFOSR

- Adaptation to actuator failures in the presence of input constraints.
- Autonomous formation flight and aerial refueling.
- Control of nonlinear systems which are non-affine in the inputs.

Morphing Aircraft: Center for Intelligent Material Systems & Structures

Principal Investigators:

Dan Inman, Harry Robertshaw Mechanical Engineering

Bill Mason

Aerospace & Ocean Engineering

Sponsors:

DARPA/NASA

Research Objectives:

- Major military aircraft effectiveness increase
 - UAV applications for now
- Same airplane performs multiple roles -
 - "Hunter-Killer"

Approach:

- Change shape for each role via smart structures, materials and actuation
- Control both the shape change and flight

Autonomous Robust Aviation

NASA OV-10A aircraft used for flight tests

Principal Investigator:

Lynn Abbott

Electrical and Computer Engineering

Sponsors:

NASA

Runway edge detection

- Develop autonomous or semiautonomous landing capability for General Aviation (GA)
- Locate runways in image sequences
- Integrate with other sensors and expand to entire flight sequence

UAV Designed and Flown

Student design: 50 pound payload, 5 hour cruise/loiter

Principal Investigator:

W.H. Mason

Aerospace & Ocean Engineering

Sponsors:

NASA

Lockheed Martin

- Sensor platforms for forestry research
- Formation flight
- Small, inexpensive UAVs

A UAV designed for carry sensor for forest canopy research

Unmanned Ground Vehicles

Autonomous Navigation Research

Research Objectives:

- Develop adaptive navigation strategies
- Create robust lane following computer vision algorithms
- Sensor fusion
- Fault tolerant system design
- Calibration and test methodologies for unmanned systems and sensors

Principal Investigator:

Charlie Reinholtz

Mechanical Engineering

Sponsors:

Honeywell
Industrial Computers
National Instruments

Autonomous Continuous Haulage Systems (CHS's)

Conventional CHS (Courtesy DBT America, Inc.)

Research Objectives:

- Develop sensor systems and effective control strategies for CHS's moving underground.
- Demonstrate these systems and control strategies on a model CHS.
- Implement this technology on new userdeveloped mining equipment.

Principal Investigator:

Bob Sturges
Mechanical Engineering
(with Amnart Kanarat)

Sponsor:

DBT America

Approach:

- Sensor Systems: Adapt sensors to mining environment: dirty, rugged, explosion-proof.
- Modeling: Develop robust kinematic and dynamic system models. Validate driving rules with scale model prototypes.
- Control Design: Use new uncertainty modeling techniques for real-time path-finding and nonlinear control.

Unmanned Teleoperated Hydraulic Systems

Principal Investigator:

Al Wicks & Charlie Reinholtz

Dept. of Mechanical Engineering

Sponsors:

Naval Surface Warfare Center, Dahlgren Case/New Holland National Instruments

- Demonstrate Conversion for dual (onboard and remote) Operation
- Develop Low-Cost, Transferable Technology
- Evaluate Effectiveness of 2-D Interface
- Explore Electro-Hydraulic Control Issues
- Create Semi-Autonomous Front-End Loader
- Case Test Site Automation

Spacecraft

Design, Dynamics and Control of Formation Flying Spacecraft

Research Objectives:

- Develop novel control strategies for clusters of spacecraft in cooperative missions.
- Demonstrate control strategies using spacecraft simulators and on-orbit studentbuilt satellites.
- Educate next generation of space systems experts

Principal Investigator:

Chris Hall
Aerospace & Ocean Engineering

Sponsors:

Air Force Office of Scientific Research
Air Force Research Laboratory
National Science Foundation
NASA Goddard Space Flight Center

HokieSat

Supporting Programs

MAD Center Human-Machine Interfaces

Multi-Disciplinary Analysis and Design Center for Advanced Vehicles

- Perform multi-disciplinary design optimization (MDO) of advanced vehicles
- Develop and use variable complexity models to obtain optimal designs.
- Perform required research in fundamental science to support design optimization.

Interactive, Immersive Virtual Environments

- Visualize real or simulated sensor data in an immersive VE
- Design and evaluate 3D user interfaces (3DUIs) for unmanned systems
- Investigate the use of information-rich VEs for combining perceptual/spatial data with abstract information

Wireless Communication

Mobile and Portable Radio Research Group

(www.mprg.org)

Center for Wireless Technology

(www.cwt.vt.edu)

Resources and Capabilities:

- RF propagation channel characterization
- Wireless system simulation (Emphasis on local area networks, microcellular communications, and macrocellular communications up to 30 GHz.)
- DSP hardware development

Resources and Capabilities:

Integrative, state-of-the-art research programs to create innovations in

- wireless networking,
- embedded and broadband wireless systems

and related systems and components.

Intelligent Materials, Systems, and Structures

(www.cimss.vt.edu)

Sample of Current Research:

- Design and analysis of smart systems and structures
- Active control and sensory systems for structural health monitoring
- Design of actuators, sensors, and hybrid control systems
- Adaptive wing designs for unmanned combat vehicles

Hybrid Electric Propulsion Systems

- Integrate vehicle propulsion and electric energy storage subsystems.
- Demonstrate improved fuel economy and range, silent watch and stealth modes.
- Transfer new power system technology to the user community.
- Define the state-of-the-art, technical risks.

Student Design Teams

Design/Build/Fly Team

Autonomous Underwater
Vehicle Team

Autonomous (Ground) Vehicle Team

DARPA Grand Challenge

The FUTURE

Center for Unmanned Vehicle Systems

Unmanned Systems Group

A center that simultaneously addresses the R&D needs of unmanned vehicle systems across autonomous air, land, sea and space systems

Center for Unmanned Vehicle Systems

- VT is uniquely suited to address crossdisciplinary problems, e.g.,
 - Navigation and mapping
 - Multi-vehicle cooperation
 - Sensor networks
 - Human-Machine interfaces

ICTAS

Institute for Critical Technology and Applied Science

- Provides multi-use laboratory space
- Provides technical and administrative support
- Enables large inter-disciplinary programs

State-wide Impact

Center for Unmanned Vehicle Systems will utilize facilities throughout the Commonwealth

A University Putting Knowledge To Work.